Recursively Learning Causal Structures Using Regression-Based Conditional Independence Test

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based Conditional Independence Test and Application in Causal Discovery

Conditional independence testing is an important problem, especially in Bayesian network learning and causal discovery. Due to the curse of dimensionality the case of continuous variables is particularly challenging. We propose a Kernel-based Conditional Independence test (KCI-test), by constructing an appropriate test statistic and deriving its asymptotic distribution under the null hypothesis...

متن کامل

Learning Causal Structures Using Regression Invariance

We study causal discovery in a multi-environment setting, in which the functional relations for producing the variables from their direct causes remain the same across environments, while the distribution of exogenous noises may vary. We introduce the idea of using the invariance of the functional relations of the variables to their causes across a set of environments for structure learning. We...

متن کامل

Independence and Conditional Independence in Causal Systems

This paper studies the interrelations between independence or conditional independence and causal relations, defined in terms of functional dependence, that hold among variables of interest within the settable system framework of White and Chalak. We provide formal conditions ensuring the validity of Reichenbach’s principle of common cause and introduce a new conditional counterpart, the condit...

متن کامل

A Permutation-Based Kernel Conditional Independence Test

Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...

متن کامل

On Gaussian conditional independence structures

The simultaneous occurrence of conditional independences among subvectors of a regular Gaussian vector is examined. All configurations of the conditional independences within four jointly regular Gaussian variables are found and completely characterized in terms of implications involving conditional independence statements. The statements induced by the separation in any simple graph are shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33013108